FINAL: ALGEBRA II

Date: 5th May 2019

The Total points is **110** and the maximum you can score is **100** points.

All vector spaces considered below are assumed to be finite dimensional.

- (6+6+6+7=25 points) Answer the following multiple choice questions about each of them. Write all correct options. No justification needed. No partial credit will be given if a correct option is missing or an incorrect option is written.
 - (a) Let A and B be two matrices. Which of the following statements are true?
 - (i) $\det(AB) = \det(A) \det(B)$
 - (ii) $\det(-A) = -\det(A)$
 - (iii) $\operatorname{tr}(AB) = \operatorname{tr}(A)\operatorname{tr}(B)$
 - (iv) $\operatorname{tr}(-A) = -\operatorname{tr}(A)$
 - (b) Let A and B be two distinct bases of a vector space V. Which of the following statements are true?
 - (i) $A \cup B$ is a generating set.
 - (ii) $A \cup B$ is a linearly independent set.
 - (iii) A and B have same number of elements.
 - (iv) If $C \subset A \cup B$ then C is either a linearly independent set or a generating set.
 - (c) Let $\phi: V \to W$ be a linear map of vector spaces. Let A be the matrix of ϕ with respect to the bases $(\mathscr{B}, \mathscr{C})$ of V and W respectively. Which of the following are true?
 - (i) $\operatorname{rank}(A) \leq \dim(\ker(\phi))$
 - (ii) $\operatorname{rank}(A) \leq \dim(\operatorname{im}(\phi))$
 - (iii) $\operatorname{rank}(A) \ge \dim(\ker(\phi))$
 - (iv) $\operatorname{rank}(A) \ge \dim(\operatorname{im}(\phi))$
 - (d) Let V and W be vector spaces. Let ϕ and ψ be linear operators V and W respectively. Consider the linear operator θ on $V \oplus W$ given by $\theta(v, w) = (\phi(v), \psi(w))$ for $v \in V$ and $w \in W$. Which of the following are true?
 - (i) $det(\theta) = det(\phi) det(\psi)$
 - (ii) $\operatorname{tr}(\theta) = \operatorname{tr}(\phi) + \operatorname{tr}(\psi)$
 - (iii) The minimal polynomial of θ is the product of the minimal polynomials of ϕ and ψ .
 - (iv) The characteristic polynomial of θ is the product of the characteristic polynomials of ϕ and ψ .

FINAL: ALGEBRA II

- (2) (8+8+8+8=32 points) Prove or disprove using a counterexample the following statements.
 - (a) Every real square matrix is conjugate to a real upper-triangular matrix.
 - (b) Let x(t) be a column vector of functions of length n and A be a n × n complex matrix. The differential equation d/dt x(t) = Ax has a solution.
 (c) Let (V, ⟨·, ·⟩) be a vector space together with a symmetric bilinear form.
 - (c) Let (V, ⟨·, ·⟩) be a vector space together with a symmetric bilinear form. Let A be the matrix of the bilinear form with respect to some basis. If det(A) = 1 then A is positive definite.
 - (d) Let $X = (x_1, x_2)$ and $Y = (y_1, y_2)$ be two vectors in \mathbb{C}^2 . The function $\langle X, Y \rangle = x_1 y_1 + i x_1 y_2 i x_2 y_2 + i x_2 y_2$ from \mathbb{C}^2 to \mathbb{C} is a hermitian form.
- (3) (3+10=13 points) Define orthogonal matrix. Let A be a real orthogonal matrix of determinant -1. Show that -1 is an eigenvalue of A.
- (4) (3+17=20 points) Let V be a vector space of dimension n over a field k. Let T be a linear operator on V. Define minimal polynomial of T. Show that if $T^m = 0$ for some $m \ge 0$ then $T^n = 0$.
- (5) (5+15=20 points) Define normal operator and self-adjoint operator on a finite dimensional hermitian space V. Let T be a normal operator on V. Show that T is self-adjoint iff all the eigenvalues of T are real.

 $\mathbf{2}$